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ABSTRACT 

This thesis focuses on the numerical modeling of the 

oceanic double-diffusive convection, an important small-

scale mixing process which is driven by the two orders of 

magnitude difference in diffusivities of heat and salt in 

seawater. This study explores the diffusive regime of 

double-diffusion which is realized when cold and fresh water 

overlies the warm and salty water.  

The aim of the research was to quantify the double-

diffusive transport in both smooth gradients and 

thermohaline staircases, and to develop clear insight into 

the origin of the staircases and specify conditions for 

their formation. Based on the numerical process modeling, it 

was determined that the evolutionary pattern of staircases 

is controlled by the merging events in which weak interfaces 

gradually erode and ultimately disappear. To illustrate 

dynamics of these events, a theoretical framework – merging 

theorem – has been developed. It was numerically confirmed 

that the merging theorem predicts the time scale of merging 

events within the order of magnitude. The validity of the 

lab derived 4/3 flux law was tested and it was determined 

that its form is consistent with the numerical results, but 

the amplitude requires adjustment. 

The computed fluxes from numerical experiments were 

comparable to the diffusive fluxes that were inferred from 

the Beaufort Gyre observations(Wilson, 2007) and an order of 

magnitude greater than the fluxes from earlier laboratory-

based experiments.  

Although a large discrepancy in the values of diffusive 

fluxes exists in the earlier laboratory and field studies, 
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the present analysis suggests that the diffusive fluxes 

could play an important factor in the Arctic heat budget; 

hence, future study in this field is recommended. 

This study contributes to a better understanding of 

global climate change, which presents a new challenge to 

national security. The Navy has to be concerned with the 

impact of climate change on naval operations, specifically 

in the Arctic where the melting polar ice cap may soon 

provide a gateway across the north, resulting in the opening 

of shipping lanes and borders. 
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I. INTRODUCTION 

A. DESCRIPTION OF DOUBLE-DIFFUSIVE PROCESS 

1. Importance of Double-diffusive Process 

The significance of double-diffusive mixing and its 

effect on various large oceanic features has become a major 

driving force for much of oceanographic research in this 

field over the last few decades. In this thesis two 

important aspects are explored: (1) the mechanics of 

diffusive staircases and (2) the possibility that vertical 

heat fluxes, which are driven by the diffusive convection, 

play a significant role in the maintenance of the Arctic 

thermocline and melting rates of the polar ice cap. 

2. Double-diffusive Process - Introduction 

Double-diffusive convection may occur in a stratified 

fluid if its density is determined by two or more 

constituents with different molecular diffusivities. This 

process is commonly observed in the ocean where the 

diffusivity of heat is about 100 times greater than the 

diffusivity of salt (typical value of the molecular 

diffusivity of heat ~ 1.4x10-7 m2s-1, and that of salt ~ 

1.1x10-9 m2s-1). Since heat diffuses much faster than salt, 

the resulting instability is vigorous and often leads to 

elevated mixing. Double-diffusive convection was first 

discovered by Henry Stommel (Stommel et al.,1956) and Melvin 

Stern (Stern, 1960).  
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3.  Salt-finger Regime of Double-diffusive Process 

Two modes of the double-diffusive process are known: 

the salt-finger regime and the diffusive convection. To 

understand the salt-finger mode, consider a case in the 

ocean where a warm and salty layer of water overlies a 

colder and fresher layer of water, the bottom layer having a 

higher density than the top layer. In the absence of 

molecular diffusion, if a parcel of water is displaced 

downward by some force from the lower density layer into the 

higher density layer, it tends to return to its initial 

position due to buoyancy force. However the situation 

becomes very different when diffusion is taken into account. 

Instead, due to the higher diffusivity of heat, the parcel 

will become denser (and heavier) than the surrounding water 

and will continue to sink further. As a result, narrow, 

elongated vertical structures are formed, which are commonly 

referred to as salt fingers.  

The faster diffusing component (heat) is stabilizing, 

and the slower diffusing component (salt) is destabilizing. 

The regions favorable for the salt finger regime include the 

tropics and subtropics where both the temperature and 

salinity decrease with depth. According to Schmitt (1990), 

90% of the upper kilometer of the Atlantic at 24 degrees 

North is favorable to salt finger formation.  

Other favorable regions are semi-enclosed seas which 

outflow into the ocean, such as the Mediterranean Sea and 

its outflow through the Straits of Gibraltar. Due to the 

exceedance of evaporation over precipitation in the 

Mediterranean, the warm and salty waters of the 

Mediterranean flow over the colder and fresher waters of the 
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Atlantic and spread out to a depth of about 1 kilometer. A 

numerical example is presented in Figure 1. 

 

Figure 1.   Numerical simulation of salt fingers. Red color 
corresponds to high values of salinity; low values are 

shown in blue. 

4.  Diffusive Convection Regime of Double-diffusive 
Process 

The second regime, the diffusive convection, occurs 

when a cold, fresh layer overlies a warmer, saltier layer. 

Again, in order to preserve stability, the bottom layer has 

greater density than the top layer. Due to differing 

diffusivities of the two components, diffusive plumes grow 

across the interface in the vertical direction, and 

transport both the heat and salt between the two layers.  In 
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this case, the faster diffusing constituent (heat) is 

destabilizing and provides the release of potential energy 

to drive the motion, and the slower diffusing constituent 

(salt) is stabilizing. The regions favorable for the 

diffusive convection include the polar and subpolar regions 

of the Arctic and the Southern Ocean. Here, the melting of 

ice and small rates of evaporation result in the colder and 

fresher upper layer, thereby resulting in conditions 

favorable to diffusive convection. A numerical example is 

shown in Figure 2. 
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Figure 2.   Diffusive convection example. Two layer system 
with the depiction of heat (left) and salinity (right). 
The high values of T and S are shown in red; low values 

are represented in blue. 

 

The diffusive convection, in turn, takes two distinct 

forms depending on the background stratification: 

oscillatory convection in smooth gradients and diffusive 

layering. The schematic diagram in Figure 3 describes 

oscillatory diffusive convection. In this model, a water 

parcel is slightly displaced upward in a diffusively 

favorable environment (a cold, fresh layer overlays a warmer 

and saltier one). As the particle travels upwards, it will 

rapidly loose heat but maintain salinity. However, due to 

the decrease of the background salinity with depth, the 
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parcel becomes heavier than its surroundings, and the 

buoyancy force will drive it back towards the initial 

position. The parcel becomes heavier from the initial state 

not only because of the change in the density contrast with 

its surroundings, but also because of its heat loss. As a 

result, the restoring buoyancy force which drives the parcel 

to its initial position is now greater than the initial 

upward buoyancy force. The final result is a gain of energy 

by the parcel and subsequent oscillatory motion during which 

the parcel overshoots its original position of neutral 

equilibrium. An analogous process takes place as the parcel 

travels downward below its initial position. It now gains 

heat, but maintains salinity, and since the parcel is 

fresher and lighter, it will experience an upward buoyancy 

force and overshoot its initial position. The whole cycle 

will be repeated time and again, with an increase of energy 

within the parcel and the growth of oscillations over time. 

This instability pattern is sometimes referred to as the 

“over-stable” mode. 
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Figure 3.   Schematic diagram of oscillatory diffusive 
convection. 

More common in the ocean is the second mode of 

diffusive convection, known as the diffusive layering. This 

mode is characterized by well mixed layers separated by 

sharp, diffusive interfaces. Figure 4 represents a situation 

where a cold and fresh layer of water rests on the top of 

the denser warm and salty layer. In this configuration, the 

heat will diffuse faster than salt, resulting in the 

downward density flux across the interface. The region 

directly below (above) the interface becomes denser 

(lighter). As a result, the top-heavy convection is 

maintained on both sides of the interface. 
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Figure 4.   Schematic diagram of diffusive layering. 

 

B. REGIONS SUCEPTABLE TO DOUBLE DIFFUSION 

 In order to determine which part of the world’s oceans 

will be favorable for double diffusion, two different 

parameters can be used. Turner (1965) described the 

dependence of the relative strength of double diffusion on 

the density ratio as 

     Z

Z

TR
Sρ

α
β

=      (1) 

where α  is the coefficient of thermal expansion, β  is the 

coefficient of saline contraction, and ZT and ZS  are the 
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vertical temperature and salinity gradients, respectively. 

The definition of density ratio (1) is used for the salt 

finger regime of double diffusion; the diffusive convection 

is described by the inverse of (1). The most intense double 

diffusion for both regimes is realized when R ρ  approaches 

1. There are associated difficulties with mapping world 

oceans’ favorability to double diffusion based on R ρ . You 

(2002) points out that most ocean regions often show 

extremely large positive or negative values of R ρ , making 

the interpretation difficult. 

To simplify interpretation, Ruddick (1983) presented 

the Turner angle, Tu, named in honor of J. Stewart Turner: 

   1(deg) tan ,T S T STu
z z z z

α β α β− ∂ ∂ ∂ ∂⎛ ⎞= − +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
.  (2) 

R ρ  and Tu can be related by 

     ( )tan 45R Tuρ = − + .    (3) 

 The physical meaning of the Turner angle is described 

in Figure 5. To summarize, when -90 deg <Tu<-45 deg (or 

0<R ρ <1, as defined in equation (1), diffusive convection is 

possible; when -45 deg <Tu<45 deg (or 0<R ρ < ± ∞ ), the water 

column is stably stratified with respect to T and S, and 

double diffusion is not possible; and when 45 deg <Tu<90 

(1<R ρ <  ± ∞ ) the salt finger regime can be expected. 

 You (2002) used the 1994 Levitus climatological atlas 

to calculate Tu for the world oceans. The three major ocean 

basins are displayed in Figures 6-8. He notes that about 44%  
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of the oceans are favorable for double diffusion, of which 

30% takes the form of salt fingering, and 14% is diffusively 

favorable. 

 

 
Figure 5.   Illustration of Turner angle Tu (degrees)with 

corresponding R ρ value indicated. Adopted from You 
(2002). 
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Figure 6.   3D plots of (a) Tu: the color bar marks diffusive 
convection(-90 deg<Tu<-45 deg), doubly stable (-45 
deg<Tu<45 deg), and salt-fingering(45 deg<Tu<90 

deg),(b)diffusive convection only and (c)salt-fingering 
only in the western (left panel) and eastern (right 
panel) Altantic Ocean. Adopted from You (2002). 
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Figure 7.   Same as Figure 4, but for Indian Ocean 
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Figure 8.   Same as Figure 5, but for the Pacific Ocean. 
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C.  THERMOHALINE STAIRCASES 

One of the most fascinating aspects of double-diffusive 

convection is related to its ability to form stepped 

structures. These so called thermohaline staircases consist 

of mixed layers which are separated by thin stratified 

interfaces. There have been several theories proposed to 

explain the origin of theromohaline staircases. One of the 

earliest is the collective instability mechanism (Stern, 

1969), which attributes the staircase formation to the 

interaction between waves and double-diffusion, resulting in 

a system of sheets and layers; a relatively recent 

hypothesis that steps in temperature and salinity profiles 

represent intrusions evolving into a staircase (Merryfield, 

2000); and the latest theory proposes that layers form as a 

result of the instability of the flux gradient laws – the 

instability which manifests itself in the form of growing, 

horizontally uniform perturbations transforming the basic 

gradient into a well-defined thermohaline staircase (Radko, 

2003, 2005).  

Salt finger staircases are normally observed when R ρ  

is less than 2; however, staircases associated with 

diffusive-convection have been observed over a wider range 

of 1<R ρ <10. Recent field data from the Atlantic Ocean have 

shown that vertical fluxes within thermohaline staircases 

are significantly (by an order of magnitude) enhanced over 

non-staircase regions with similar stratifications (Schmitt 

et al., 2005). Thus, it is vital to improve our 

understanding of thermohaline staircase formation, evolution 

and the large scale consequences. In this study, it is 
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argued that staircases could have an impact on the oceanic 

heat budget in the Arctic Ocean. 

D. EQUILIBRIUM STRUCTURE OF DIFFUSIVE STAIRCASES 

Another interesting feature of diffusive staircases is 

related to their evolution over time. The layers which form 

initially are unstable and thin. They merge continuously, 

which results in increasing step height until an equilibrium 

thickness is reached. This merging of layers in diffusive 

staircases is attributed to the secondary instabilities of 

steady-state staircases (Radko, 2005). Two merging 

mechanisms are possible: either layers merge when interfaces 

drift and collide (Balmforth et al., 1998), or the steps 

with small buoyancy variations become even weaker and 

eventually vanish (Merryfield, 2000). Radko (2005) observed 

that formation and equilibration of the staircase increased 

the diffusive fluxes by almost an order of magnitude. 

One of the aims of this study is the evaluation of 

diffusive fluxes; therefore, it is necessary to introduce 

the flux law for diffusive convection.  The so-called 4/3 

flux law for diffusive convection was formulated by Turner 

(1965). The 4/3 flux law relates temperature flux FT (in 

degrees C m s.-1) and salinity flux Fs (in m s.-1) to the 

temperature and salinity steps across the diffusive 

interface ( T and S∆ ∆ ) as follows: 

2 1/3 4/3
T 

S T 

αF  C(g / ) ( T)                                     (4) 
F  αF                                                              (5)     

Tκ ν α
β γ

= ∆
=

 

where C ( )Rρ  and ( )R
ρ

γ , kT is the molecular diffusivity of 

heat, ν  is the kinematic viscosity, g is the gravitational 
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acceleration, α  is the coefficient of thermal expansion, β  

is the coefficient of haline contraction, γ  is the flux 

ratio, and C is a constant determined from experimental data 

or oceanic observations assuming that the 4/3 flux law is 

valid. In (4) and (5), dimensional fluxes are used. The 4/3 

flux law is therefore independent of stair thickness, but 

dependent on the density ratio. Dimensional considerations 

(Turner, 1973) suggest that both γ  and C are uniquely 

determined by the density ratio, Rρ . 
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II. NUMERICAL SIMULATION 

A. MODEL DESCRIPTION 

In order to study oscillatory diffusive convection, two 

dimensional numerical simulations were performed on the 

Naval Postgraduate School High Performance Computing Center 

Linux clusters. Following Radko & Stern (1999), the 

temperature and salinity fields were decomposed into the 

linear basic state ( , ST ) and perturbations (S, T ) of it. For 

computational convenience, Boussinesq equations were non-

dimensionalized. Therefore, 1/ 4
Td=(k /g )zTν α  represents the unit 

of length, kT/d is the velocity scale, d2/kT represents the 

time scale, kT is the molecular diffusivity of heat, ν  is 

the kinematic viscosity, g is the gravitational 

acceleration, α  is the coefficient of thermal expansion and 

zT is the temperature gradient. Wilson (2007) computed 

zT =0.015 based on the average 1.5 deg C decrease in T over 

100 m depth in the diffusive layer in the Beaufort Gyre. 

Similarly, zT dα  is the scale for both temperature and 

salinity perturbations, resulting in  

   

2

2

2

0

1 ( ) ,
Pr

0,

,

1 ,

dv p v T S k
dt
v

dT w T
dt
dS w S
dt R

τ

⎫= −∇ +∇ + − ⎪
⎪

∇ ⋅ = ⎪
⎪
⎬− = ∇ ⎪
⎪
⎪− = ∇
⎪⎭

     (6) 
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where TPr = /kν  is the Prandtl number, S T= k /kτ  is the 

molecular diffusivity ratio (Lewis number), Rρ  is the 

density ratio for the basic uniform S – T gradient, and v, 

T, S are non-dimensional velocity, temperature, and 

salinity. For parameters of Arctic staircases, d ≈1 cm, 

t ≈ 686 seconds. 

The conversion formula for temperature flux is  

   FTdim = FTnon-dim Tκ dT/dz   (7) 

and the corresponding heat flux is 

  FHdim (W m-2) = FTdim (m/s K)Cp ρ    (8) 

where Cp is the specific heat for sea water and ρ  is the 

density of sea water. Substituting (7) into (8) yields the 

conversion factor of 0.0084. 

Unless specified otherwise, the diffusivity ratio of 

 = 1/10τ  was used, which is an order of magnitude greater 

than the true value for heat/salt ( = 1/100τ ). This greater 

value was selected purely for numerical convenience. 

Numerical calculations with a true diffusivity ratio would 

require resolving the extremely fine salt dissipation scale, 

which is by far less than the characteristic size of the 

diffusive layers, and the calculations would be 

computationally prohibitive. As was pointed out in Stern et 

al.,(2001), such a modification is not expected to alter the 

fundamental physics and dynamics of the diffusive 

convection. Furthermore, a simple extrapolation procedure is 

be used to evaluate the heat/salt ( 0.01τ = ) fluxes from 0.1τ =  

numerical simulations. 



 19

A fully dealiased pseudospectral method described and 

first used in Stern & Radko(1998) is employed to obtain a 

two dimensional numerical solution for the system of 

equations (6) above. The solution is doubly-periodic in x 

and z. All numerical algorithms were coded in Fortran.  

B. PRELIMINARY CALCULATIONS 

In order to gain confidence in the numerical 

calculations, and to better understand the dynamics of the 

diffusive convection, a simple experiment was carried out 

initially. The experiment was initiated from a random 

computer-generated distribution of T and S and is shown in 

Figures 9 and 10. This experiment was performed using a 

uniform grid of 512x1024 nodes and non-dimensional grid 

spacing delta x=y=0.75 which corresponds to a vertical scale 

of 7.5 m, and R ρ  = 1.1. The first stage of the experiment 

(t<50) is characterized by the development of small scale 

diffusive plumes presented in Figure 9. At t=500, the field 

of diffusive plumes arranged itself into a system of well 

defined horizontal steps. Next, a series of merging events 

occurred: between t= 500 and t=600 the number of steps 

decreased from 9 to 6 as shown in Figures 9 and 10. Six 

steps merged into three in less than 100 time units, or 

approximately 19 hours. The experiment reached the 

equilibrium at approximately t=800 when the staircase 

evolved into two final steps, as shown in Figure 11. The 

equilibrium step height in the final stage was 3.75 m. The 

experiment was continued until t=950; however, no merging 

took place during this period.  
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The time series of fluxes for this experiment, which 

are computed over the whole computational domain, is shown 

in Figure 12. It confirms that the diffusive fluxes increase 

with each merging event, and once the equilibrium thickness 

of the steps is reached, the fluxes decrease by about half 

of their value and, subsequently, remain roughly constant. 

This preliminary numerical experiment indicates: 

(i) sensitivity of fluxes to the step size 

(ii) the tendency of the weak steps to merge 

The mechanics of merging in a staircase and associated 

fluxes are now analyzed in greater detail. 
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Figure 9.   Formation of layers in a double-diffusive 

numerical experiment. The left figure shows a well 
developed field of two dimensional diffusive plumes 

after t=50. Note the well defined horizontal layers in 
the right figure after t=500. The red color corresponds 
to high values of T; the low values are shown in blue. 
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Figure 10.   Continuation of the numerical experiment from 

Figure 9 demonstrates merging of diffusive layers. Note 
six layers in the left figure at t=600 merging into 

four layers at t=700. 
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Figure 11.   Continuation of the numerical experiment from 
Figures 9 and 10. The equilibrium state shows 2 layers. 
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Figure 12.   Time series of diffusive fluxes in the numerical 
experiment initiated from random noise. The blue curve 
indicates heat flux, the green one salinity flux. The 
arrows indicate a merging event, the red arrow an 

equilibrium state. 

 

C ONE-STEP FLUXES 

Turner (1973) extensively discussed the diffusive 

instability. One of the most important properties of well 

formed diffusive interfaces is the temperature and salinity 

flux across them. Padman (1994) and Muench et al (1990) 

indicated that diffusive convection could be a significant 

process influencing the vertical fluxes of heat and salt 

from the warm and salty intermediate water upwards to the 

polar mixed layers and sea ice. The basin-averaged estimate 

of heat loss from the Atlantic layer is 7 W m-2(Aagaard and 

Greisman, 1975). Previous studies (Padman et al., 1987) 

estimated heat flux using the extrapolation of the 
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laboratory flux laws to the ocean and reported values of 

0.02 to 0.1 W m-2. However, based on the analysis of the 

Arctic thermohaline staircase from the Beaufort Gyre 

experiment, Wilson (2007) reported that the diffusive fluxes 

could be an order of magnitude greater than the diffusive 

fluxes determined from previous laboratory experiments. Use 

of the direct numerical simulations opens a possibility for 

resolving the controversy with regard to the magnitude of 

diffusive fluxes. 

A series of one-step numerical experiments was 

performed in order to determine the magnitude of diffusive 

fluxes numerically and compare them with those from the 

laboratory and field observations. The range of R ρ  was from 

1.1 to 5.0. The upper range of the values of Rρ  is more 

significant for the comparison with the Wilson (2007) Arctic 

Ocean results, since the values of Rρ  in the thermohaline 

staircases in that geographic region are 5 or higher. The 

vertical scale of steps was varied as well, in order to 

examine dependencies of simulated fluxes and structures on 

H. The step thicknesses were varied from 0.75 to 3 m and the 

results are summarized in Table 1. 

As expected, the fluxes generally decrease with 

increasing Rρ . The fluxes also generally increase with 

increasing layer thickness, H, except for a few values in 

the range of Rρ <1.9 and H>3.0m. However, these differences 

are small and can be attributed to the incomplete 

equilibration in some runs. 
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R ρ  Layer 

Thickness 

(m) 
1.1 1.3 1.5 1.7 1.9 2.1 2.3 3.0 4.0 5.0 

0.75 62.8 28.9 20.9 13.1 9.13 6.90 4.94 3.08 1.95 1.24

1.5 155 58.2 43.1 33.2 24.9 20.5 20.8 11.8 9.27 7.76

3.0 45.9 49.2 31.3 30.3 26.5 18.0 19.0 14.1 11.3 10.3

 

Table 1.   Diffusive heat flux (non-dimensional) as the 
function of density ratio and layer thickness. 

D MERGING EVENTS 

 Next, in order to better understand the mechanics of 

merging in a staircase (see Figures 9, 10), several 

numerical experiments were performed to isolate the merging 

process. The initial setup consisted of two almost identical 

steps; the focus was on the evolutionary pattern and the 

time scale of expected merging events. All experiments were 

initiated in the mesh grid of 512 x 512 points and delta 

x=y=0.3 which corresponded to a vertical scale of 1.5 m. The 

value of R ρ  was varied from 1.2 to 1.5. For each 

experiment, the value of R ρ  was slightly higher for one 

interface and slightly lower for the other. The 

representative numerical experiment in this series is shown 

in Figures 13-15. After approximately t=100, the erosion of 

one of the steps is noticeable in Figure 13. The process 

continues until the step is completely eroded at t=400.  

Figures 14 and 15 illustrate a gradual weakening of the 

interface until its complete disappearance at t=400, 
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indicating that a merging event took place between t=300 and 

t=400. Visual inspection of the evolutionary pattern 

indicates that the interfaces remains stationary and the 

weaker one is gradually eroded until it completely 

disappears.  

Figure 16 represents a time series of numerical fluxes 

for the same two-step experiment. Note the increase in the 

fluxes indicating the merging of two steps into one. The 

jump in fluxes occurs at t=350, indicating the exact time 

the merging event took place. This coincides with findings 

from Figures 13-15. 

The experiments are summarized in Table 2. The results 

confirm that with increasing R ρ , the diffusive fluxes 

decrease. Each experiment exhibits a rough doubling of 

fluxes once merging takes place. The time scale of merging 

increases with increasing R ρ . The numerical results will be 

explored further once the theoretical framework for 

understanding merging events – the merging theorem – is 

developed in Chapter III. 
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Figure 13.   Numerical experiment showing merging evolution of 
two steps into one. The plots show the total averaged 
density for the simulation, from left to right at 

t=25,100,200,300,350,400. The initial step height in 
the experiment is 0.75 meters.  
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Figure 14.   Evolution of merging event in a numerical 

experiment of a two-step system. The top figure shows a 
sharp interface and clearly formed diffusive plumes.   
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Figure 15.   Continuation of merging experiment. The top figure 

shows weak interface at t=300. In the bottom figure, 
the middle interface is no longer present at t=400. 
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Figure 16.   Time series of diffusive fluxes in a two-step 
numerical experiment. The blue curve represents heat 

flux; the green one represents salinity. 

 

R ρ  TF before 

merging 

TF after 

merging 

Time 

(non-dim.) 

1.2 48 119 130 

1.3 41 83 350 

1.4 31 70 950 

 

Table 2.   Summary of two-step numerical experiments. 
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III. MERGING THEOREM 

A. INTRODUCTION 

The existence of thermohaline staircases in the ocean 

has been well established (Kelley, 1984; Schmitt, 1994). 

They frequently occur in the ocean regions where the 

conditions for double diffusive instability are favorable. 

The mechanics proposed for their origin and evolution have 

been discussed in the Introduction. Here, the mechanism for 

the merging of such staircases will be explored and 

subsequently tested in a series of numerical experiments. 

Two mechanisms for the merging of staircases have been 

studied: either layers merge when interfaces drift and 

collide, or the interfaces will erode over time without 

exhibiting any vertical motion. The first mechanism has been 

proposed by Balmforth et al (1998) who formulated a one-

dimensional model of the mechanically forced turbulence in a 

stratified fluid. Following Radko (2007), this mechanism 

will be referred to as H-merger. The second mechanism, which 

was described by Merryfield (2000), who modeled the up 

gradient buoyancy flux in a double-diffusion favorable 

fluid. According to his model, the steps with small buoyancy 

variations weaken even further and eventually vanish. Again, 

following Radko (2007), this mechanism will be referred to 

as B-merger. 

This chapter is organized as follows: First, the 

merging theorem for the two-component H- and B- merger will 

be formulated. Next, a physical explanation of B- merger 

will be presented, and the relationship between the density 
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ratio, R ρ , and the diffusivity ratio, γ , will be 

demonstrated. Lastly, the relationship between the mechanics 

of merging and the variation in the diffusivity ratio will 

be explored. 

The starting point for the derivation of the two 

component merging theorem is the two component buoyancy 

conservation equation where T(z,t) and S(z,t) are heat and 

salinity, respectively. FT and FS are heat and salinity 

fluxes, respectively. 

S

T

dT dF
dt dz
dS dF
dt dz

⎫
= ⎪⎪

⎬
⎪= ⎪⎭

     (9) 
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Figure 17.   Schematic representation of the stability analysis 
for a periodic system of layers and interfaces. (a) 

Basic state with equal steps. (b) Perturbed state with 
the slightly increased buoyancy jumps at even 

interfaces and with the correspondingly decreased jumps 
at odd interfaces. 

 

Following Radko’s (2007) one-component theory, we 

express the heat (T) and salinity (S) variations across a 

two step system in Figure 17(b) as follows: 

12 01

23 12

12 01

23 12 ,        ( , ) ( , )

T T T
T T T
S S S
S S S T S

δ
δ
ε
ε δ ε

− = − ⎫
⎪− = + ⎪
⎬− = − ⎪
⎪− = + << ⎭

  (10) 
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where ( / )  and ( / )T T z H S S z H= ∂ ∂ = ∂ ∂  are the temperature and 

salinity variation across one step in Figure 17(a), 

respectively. Symbols δ  and ε  represent a small 

perturbation to T and S, respectively. Note that the 

thicknesses of two layers in Figure 17 (b) are not 

necessarily equal: 

1,2

2,3 ,          
H H h
H H h h H

= − ⎫⎪
⎬= + << ⎪⎭
    (11) 

where Hnn+1 represents the distance between the two 

interfaces nz z= and 1nz z += . For convenience, the buoyancy 

equation is expressed in the integral form, which is 

accomplished by integrating (9) over the interval[zbot, ztop]: 

   

( ) ( )

( ) ( )

top top

bot bot

top top

bot bot

z z T
T T

top bot
z z

z z S
S S

top bot
z z

T Fdz dz F z F z
t t

S Fdz dz F z F z
t t

⎫∂ ∂
= = − ⎪

∂ ∂ ⎪
⎬

∂ ∂ ⎪
= = − ⎪∂ ∂ ⎭

∫ ∫

∫ ∫
   (12) 

where two levels ztop(t) and zbot(t) can vary in time. 

Utilizing the identity 

   

( ) ( )

( ) ( )

top top

bot bot

top top

bot bot

z z
top bot

top bot
z z

z z
top bot

top bot
z z

dz dzd TTdz dz T z T z
dt t dt dt

dz dzd SSdz dz S z S z
dt t dt dt

⎫∂
= + − ⎪

∂ ⎪
⎬

∂ ⎪
= + − ⎪∂ ⎭

∫ ∫

∫ ∫
  (13) 

the equation (13) is re-written to a new form 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

top

bot

top

bot

z
top T Tbot

top bot top bot
z

z
top S Sbot

top bot top bot
z

dz dzd Tdz T z T z F z F z
dt dt dt

dz dzd Sdz S z S z F z F z
dt dt dt

⎫
= − + − ⎪

⎪
⎬
⎪

= − + − ⎪
⎭

∫

∫
. (14) 
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Next, the integral relation in (14) is applied to the 

individual layers [ ]1,n nz z +  resulting in 

   

1

1

1
1 1

1
1 1

n

n

n

n

z
T Tn n

n n n n
z

z
S Sn n

n n n n
z

dz dzd Tdz T T F F
dt dt dt

dz dzd Sdz S S F F
dt dt dt

+

+

+
+ +

+
+ +

⎫
= − + − ⎪

⎪
⎬
⎪= − + − ⎪
⎭

∫

∫
   (15) 

where Fi=F(zi). The greatest contribution to the integrals 

of temperature and salinity in equation (15) comes from the 

interior of layers where the gradients of temperature and 

salinity are nearly uniform, and therefore 

     

1

1

1  1

1  1

n

n

n

n

z

n n n n
z

z

n n n n
z

Tdz T H

Sdz S H

+

+

+ +

+ +

⎫
≈ ⎪

⎪
⎬
⎪≈ ⎪
⎭

∫

∫
.   (16) 

Applying equations (15) and (16)to two successive layers 

[ ]1,n nz z +  where n = 1,2 yields 

     

( )

( )

( )

( )

12 12 2 1

23 23 3 2

12 12 2 1

23 23 3 2 .

T T

T T

S S

S S

d H T F F
dt
d H T F F
dt
d H S F F
dt
d H S F F
dt

⎫= − ⎪
⎪
⎪= − ⎪
⎬
⎪= −
⎪
⎪
⎪= −
⎭

    (17) 

Due to a substantial variation in temperature and salinity 

across the interfaces, it is essential to define the 

temperature and salinity at the interface ,n nT S . The center 

of the interface is defined as a point where the temperature 
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and salinity are average values at the center of the two 

neighboring layers 

     

1 1

1 1

2

2

n n nn
n

n n nn
n

T TT

S SS

− +

− +

+ ⎫= ⎪⎪
⎬+ ⎪=
⎪⎭

.    (18) 

A similar set of integral equations results from the 

temperature and salinity budgets for areas enclosed by the 

centers of the neighboring layers [ ]1nnz + : 

23 23 23 23 2312 12 12 12 12
23 12 23 12

23 23 34 34 23 23 34 34 34 23
34 23 34 23

23 23 23 23 2312 12 12 12

2 2 8 8

2 2 8 8

2 2 8 8

T TLL

T TL L

LL

H T H T dzH T H T dzd T T F F
dt dt dt

H T H T H T H T dz dzd T T F F
dt dt dt

H S H S dzH S H Sd S
dt dt

∆∆⎛ ⎞+ + − = − + −⎜ ⎟
⎝ ⎠

∆ ∆⎛ ⎞+ + − = − + −⎜ ⎟
⎝ ⎠

∆∆⎛ ⎞+ + − =⎜ ⎟
⎝ ⎠

12
23 12 23 12

23 23 34 34 23 23 34 34 34 23
34 23 34 232 2 8 8

S S

S SL L

dz S F F
dt

H S H S H S H S dz dzd S S F F
dt dt dt

⎫
⎪
⎪
⎪
⎪
⎪
⎬
⎪− + − ⎪
⎪

∆ ∆⎛ ⎞ ⎪+ + − = − + −⎜ ⎟ ⎪⎝ ⎠ ⎭

 (19) 

where 1 1 L12 L23( );  ( T, S)  and ( T, S)nn nnF F z+ += ∆ ∆ ∆ ∆  are the temperature 

and salinity variations across the interior of the layers in 

Figure 17(b). To formulate the equations for evolution of 

, ,δ ε  and h in time, the equations (17) and (19) are utilized 

and the result is simplified using periodicity conditions, 

yielding: 

    

2
2 1

2
2 1

2 2( )

2 2( )

T T

S S

dTdH h F F
dt dt

dSdH h F F
dt dt

δ

ε

⎫+ = − − ⎪⎪
⎬
⎪+ = − −
⎪⎭

.   (20) 

Since it is assumed that the perturbations are relatively 

small when compared to the basic state, (20) is linearized: 

We neglect the nonlinear terms h(dT2/dt) and h(dS2/dt) in 
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(20), further reducing(20) to       

 
( )

( )

2 1

2 1

2

2

T T

S S

d F F
dt H
d F F
dt H

δ

ε

⎫= − − ⎪⎪
⎬
⎪= − −
⎪⎭

.       (21) 

Next, the two equations in (19) are subtracted and after 

simplifying using the periodicity conditions, the following 

is obtained: 

 

12 23 12
23 12 23 12

12 23 12
23 12 23 12

( ) 2( ) 2 ,
4 4

( ) 2( ) 2 ,
4 4

T TL L
L L

S SL L
L L

T T dzdh dh H dT T T F F
dt dt dt dt

S S dzdh dh H dS S S F F
dt dt dt dt

ε

δ

∆ + ∆ ⎫− − ∆ −∆ = − + ⎪⎪
⎬∆ + ∆ ⎪− − ∆ −∆ = − +
⎪⎭

. (22) 

Equation (22) is linearized about the steady state in Figure 

17. Since 12 / 0dz dt =  in basic steady state, terms 12dz
dt

ε  and 

12dz
dt

δ  approach zero in the limit of a weak perturbation. It 

is reasonable then to neglect the non-linear term 122( / )dz dt . 

Realizing that 12 23( , ) ( , ) ( , )L L LT S T S T S∆ ∆ ≈ ∆ ∆ ≈ ∆ ∆ , the h-equation is 

reduced to 

 

( ) ( )

( ) ( )

23 12 23 12

23 12 23 12

2
2 4

2 .
2 4

T TL
L L

S SL
L L

T dh H dT T T F F
dt dt

S dh H dS S S F F
dt dt

∆ ⎫⎛ ⎞− − ∆ −∆ = −⎜ ⎟ ⎪⎝ ⎠ ⎪
⎬

∆⎛ ⎞ ⎪− − ∆ −∆ = −⎜ ⎟ ⎪⎝ ⎠ ⎭

.  (23) 

Replacing the instantaneous fluxes in layers and 

interfaces  and T S
n nF F  in (21) by the steady one-step fluxes 

TF  and SF  (Radko 2007) based on the parameters of a region 
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extending between the centers of two adjacent layers 

1 1(  and )n n nnz z− − , we arrive at: 

  

( )
( )
( )
( )

1 12 01 12 01 12 01

2 23 12 23 12 23 12

1 12 01 12 01 12 01

2 12 01 12 01 12 01

, ,

, ,

, ,

, , ,

T T

T T

S S

S S

F F T T S S z z

F F T T S S z z

F F T T S S z z

F F T T S S z z

⎫≈ − − −
⎪

≈ − − − ⎪
⎬

≈ − − − ⎪
⎪≈ − − − ⎭

.   (24) 

Next, the difference between the temperature and salinity 

fluxes at the adjacent interfaces is reduced to 

   
2 1

2 1

2 2

2 2

T T
T T

S S
S S

F FF F
T S

F FF F
T S

δ ε

δ ε

⎫∂ ∂
− = + ⎪⎪∂ ∂

⎬
∂ ∂ ⎪− = + ⎪∂ ∂ ⎭

   (25) 

and (25) becomes 

   

4 4

4 4

T T

S S

d F F
dt H T H S
d F F
dt H T H S

δ εδ

δ εε

⎫∂ ∂
= − − ⎪⎪∂ ∂

⎬
∂ ∂ ⎪= − − ⎪∂ ∂ ⎭

    (26) 

1. H – Merger 

The fluxes at the center of each layer  1n nF +  are 

approximated by their corresponding one step layer based on 

the thickness and buoyancy variation across this layer 

   

12 2 1 2 1 2 1

23 3 2 3 2 3 2

12 2 1 2 1 2 1

23 3 2 3 2 3 2

( , , )

( , , )

( , , )

( , , )

T T

T T

S S

S S

F F T T S S z z

F F T T S S z z

F F T T S S z z

F F T T S S z z

⎫= − − −
⎪

= − − − ⎪
⎬

= − − − ⎪
⎪= − − − ⎭

   (27) 
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( )

( )

23 12

23 12

4
2 4

4
2 4

T
L

L L

S
L

L L

T dh H d FT T T h
dt dt H

S dh H d FS S S h
dt dt H

⎫∆ ∂⎛ ⎞− − ∆ −∆ =⎜ ⎟ ⎪∂⎝ ⎠ ⎪
⎬

∆ ∂⎛ ⎞ ⎪− − ∆ −∆ =⎜ ⎟ ⎪∂⎝ ⎠ ⎭

  (28) 

   
23 12

23 12

2

2

L
L L

L
L L

TT T h
H
SS S h
H

∂∆ ⎫∆ −∆ = ⎪⎪∂
⎬∂∆ ⎪∆ −∆ =
⎪∂ ⎭

    (29) 

and finally, substitution of the normal modes 

( ) ( )0 0 0, , , , exp( )h h tδ ε δ ε λ=  in equation (28) results in the 

eiegnevalue equation for H-growth rates: 

  
4 4

.

2 2 2 2

T S

H
L L L L

F F
H H

T T S SH HT S
H H

λ

∂ ∂
∂ ∂= =

∆ ∂∆ ∆ ∂∆
− − − −

∂ ∂

  (30) 

This equation indicates that if fluxes are insensitive  

to the layer thickness, then Hλ  = 0 and the H-merger events 

cannot occur. This observation may rationalize the absence 

of H-mergers in the numerical simulations (Figures 9-11). 

2. B – Merger 

Substitution of the normal modes ( ) ( )0 0 0, , , , exp( )h h tδ ε δ ε λ=  

in (26) results in the eigenvalue equation for growth rates: 

2
2

4 16 0
T S T S S T

B B
F F F F F F

H T S H T S T S
λ λ

⎫⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ⎪+ + + − = ⎬⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ⎪⎝ ⎠ ⎝ ⎠ ⎭
 (31) 

Since the free coefficient is expected to be small, the 

positive root can be approximated by 



 42

4
S T T S

B T S

F F F F
T S T S

F FH
T S

λ

⎫∂ ∂ ∂ ∂
− ⎪⎪∂ ∂ ∂ ∂= ⎬∂ ∂ ⎪+

⎪∂ ∂ ⎭

.   (32) 

3. Specific Solutions 

Suppose that Turners’ 4/3 flux laws are relevant for 

diffusive convection and can be adopted for the analysis of 

numerical solutions. (The numerical results generally 

support this view.) The 4/3 flux law from Turner (1973) has 

a form 

    

4
3( )

( )
T

S T

F C R T
F R F

ρ

ργ

= ∆

=
    (33)  

Substituting (33) into (32) yields 

  

2
1/316( )

3 ' 4 3 ' 3 'B

C
RT

H C R C C C
ρ

ρ

γ

λ
γ γ

∂ ⎫
⎪∂∆ ⎪= ⎬− − − ⎪
⎪⎭

.  (34) 

The last two terms in the denominator of (34) are very 

small, and therefore can be neglected. This simplifies (34) 

to 

   

2
1/316( )

3 ' 4B

C
RT

H C R C
ρ

ρ

γ

λ

∂ ⎫
⎪∂∆ ⎪= ⎬− ⎪
⎪⎭

.   (35) 

Since '( ) 0C Rρ < , Bλ  is positive only if the flux ratio ( )Rργ  

decreases with R ρ . This implies that thermohaline 

staircases are susceptible to B-merger as long as 0
Rρ

γ∂
<

∂
. 
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All of our numerical simulations summarized in figure 18 

indicate that this condition is satisfied and thereby (35) 

rationalizes numerous B-merger events as discussed in 

Chapter II. 

On the other hand, since fluxes in (33) are independent 

of step height, Hλ  in (30) is identically zero, which 

rationalizes the absence of H-merging events in our 

preliminary numerical simulations. 

 

Figure 18.   Dependence of λ  on R ρ  from one step numerical 

experiments. 
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B. PHYSICAL EXPLANATION 

 

Figure 19.   Illustration of B-merger and γ  dependence on R ρ . 

Depicted is a two-step staircase where FT and Fs are 
heat and salinity fluxes, respectively. The dashed line 
represents erosion of the step due to the greater flux 

of salt across interface 1 vice 2. 

 

Figure 19 attempts to explain the physical processes 

involved in B-merger of the thermohaline staircase.  

The starting point is a two-step thermohaline 

staircase. In Figure 18, two steps are almost identical, and 

the density ratio at interface 1( 1Rρ ) is only slightly 

greater than the density ratio at interface 2( 2Rρ ). 
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Diffusive convection is soon established due to the fresh 

and cold layer overlaying the warm and salty layer, 

resulting in heat and salinity fluxes, FT and Fs, across the 

interfaces. Now it is necessary to introduce the idea of 

dependence of the density on the flux ratio, γ . As Figure 

18 illustrates, the flux ratio decreases with the increasing 

density ratio. Since 1 2R Rρ ρ> , it follows that the interface 

1 has a slightly lower value of γ  than the top interface. 

Consequently, the salinity flux across the interface 1 is 

smaller when compared to the interface 2. The net result is 

the loss of salinity from the bottom step, and subsequent 

erosion of the bottom step. As salinity flux continues 

across the interfaces, it decreases across the interface 1 

and increases across the interface 2, thus causing an 

increase of S∆  across the interface 1 and decrease of S∆  

across the interface 2. This in turn causes R ρ  across the 

interface 1 to become even greater, and R ρ  across the 

interface 2 becomes even smaller. As salinity flux continues 

to increase across the interface 2, so does the value of γ  

for the same interface. Similarly, the salinity flux for the 

interface 1 continues to decrease, and so does the value of 

γ  for that interface.  

This positive feedback leads to the complete erosion of 

the weaker interface 2. The proposed mechanism is consistent 

with both merging theorem (35) and with the earlier (Chapter 

II) numerical simulations. 
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IV. THEORY-BASED ANALYSIS OF THE DIRECT NUMERICAL 
SIMULATIONS 

A. TURNER’S FLUX LAW MODEL 

1. Verification of the 4/3 Flux Law 

The 4/3 flux law, first introduced in Chapter I, is 

used in calculating of the oceanic diffusive fluxes since 

their direct measurements are rarely available. Therefore, 

estimates are made from measuring T∆  and calculating C 

empirically, then substituting into (4). If the 4/3 flux law 

applies to our numerical calculations, then the quantity 

( )
dim

4
3

dim

TF

T
 showed in Table 3 should depend largely on R ρ  but not 

on H.  

To test the 4/3 flux law, the results from the series 

of one step numerical experiments introduced earlier were 

analyzed. The fully equilibrated results of numerical 

simulations were used, and the averaged heat flux was 

computed based only on the second half of the experiment. 

The goal was to exclude the large initial fluctuations of 

diffusive fluxes and use only the equilibrated results. The 

typical non-dimensional fluxes from a one-step numerical 

experiment are displayed in Figure 20. Note the initial 

spike in the flux values.  

The magnitudes of non-dimensional fluxes obtained from 

each experiment were first dimensionalized using (7) and 

(8). Since there is a linear relationship between T∆  and 
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H∆ , both quantities are equivalent (
T
z

∂
∂

 is constant in our 

model) and H∆  (vertical step scale) was used in equation 

(4). The results are summarized in Table 3. 

 

 

Figure 20.   Time plot of non-dimensionalized diffusive fluxes 
from a numerical experiment. The blue curve and green 
curve represent heat and salinity flux, respectively. 
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R ρ  H 
(m) 

 
1.1 1.3 1.5 1.7 1.9 2.1 2.3 3.0 4.0 5.0 

0.75 .774 .357 .258 .161 .113 .085 .061 .038 .024 .015 

1.5 .758 .285 .211 .162 .122 .101 .103 .057 0.45 .037 

3.0 .544 - .157 - - - .083 .035 - .023 

 

Table 3.   
( )

dim
4
3

dim

TF

T
as a function of the density ratio,R ρ  and 

the layer thickness (m). Dashes indicate no values were 
obtained due to the computational constrains. 

 

An analysis of the results from Table 3 reveals that 

the 4/3 flux law works reasonably well for our numerical 

experiments as the values of heat flux depend more on R ρ  

and less on H. 

2. Comparison of Numerical Fluxes with Fluxes 
Computed from Oceanic Data 

There is some disagreement between the magnitude of 

diffusive fluxes that are computed using the laboratory 

derived flux laws and the fluxes computed using actual 

oceanic observation. If the diffusive heat fluxes for the 

Arctic are on the order of magnitude 2 to 6 W m-2, as 

calculated by Wilson (2007), they could play a significant 

role in the Arctic heat budget and contribute to the melting 

of the Arctic ice cap.  

Padman and Dillon (1987) reported that based on the 

data collected from the Beaufort Sea during the Arctic 

Internal Wave Experiment (AIWEX) in March-April 1985, the 
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heat fluxes estimated from laboratory-derived flux laws 

ranged from 0.02 to 0.1 W m-2 which is one to two order of 

magnitude smaller than the alternative heat flux estimates. 

Padman (1994) estimates vertical heat fluxes through 

thermohaline steps to be between 2 and 5 W m-2 using flux 

laws proposed by Kelley (1990) and Marmorino and 

Caldwell(1976). His findings are derived from the data 

collected near the Yermak Plateau as a part of the 

Coordinated Eastern Arctic Experiment(CEAREX) in 1989. Based 

on the analysis of the Ice-Tethered Profiler data obtained 

from Woods Hole Oceanographic Institute and the Beaufort 

Gyre Exploration Program, heat fluxes calculated using 

Turner’s 4/3 flux laws range from 2 to 6 W m-2 (Wilson, 

2007).  

However, as Padman and Dillon (1988) point out, 

laboratory experiments differ in a number of ways from the 

actual ocean. For example, much greater fluxes are required 

to minimize wall heat losses, and there is a possibility of 

secondary circulations driven by the tank geometry on the 

laboratory side; additionally there is the potential for 

significant interaction between double diffusion and 

instabilities driven by ambient shear. Also, laboratory 

derived flux laws (Turner, 1973) may not be the ideal tool 

to use in estimating diffusive fluxes found in oceanic 

staircases. Therefore, it is reasonable to question the 

assumption that the values of diffusive heat fluxes obtained 

from laboratory experiments can be extrapolated to the 

actual oceanic conditions. 

Another interesting angle to consider is the value of 

the molecular diffusivity ratio. As mentioned in Chapter II, 
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the numerical experiments relevant to this thesis used the 

molecular diffusivity ratio = 1/10τ . As it was explained 

earlier, this was done for numerical convenience and should 

not significantly affect the physics and dynamics of the 

diffusive convection. It is, however, highly desirable to 

take into account dependence of fluxes on τ , which was done 

as follows. 

Takao and Narusawa (1980) conducted a study with 

substances of different molecular diffusivity ratio, τ , and 

concluded that the substance with the lowest value of τ  

registered the highest flux ratio. They suggested that the 

heat fluxes across the diffusive interface should scale as 

0.71τ − . Thus the value of the diffusive fluxes would have to 

increase by a factor of 5.13 (scaling the value of 0.710.1τ −=  

in the numerical experiments). In addition, in order to 

obtain equivalent values, each numerical experiment was 

extrapolated, using the 4/3 flux law, to the step height of 

5 m, the average step height of the Beaufort Gyre Arctic 

staircase (Wilson, 2007) Table 4 summarizes the results 

after applying this correction.  
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R ρ  H 
(m) 

1.1 1.3 1.5 1.7 1.9 2.1 2.3 3.0 4.0 5.0 

0.75 33.8 15.6 2.20 11.3 5.1 3.7 2.7 2.7 1.0 0.9 

1.5 33.3 12.3 1.80 9.23 5.3 4.7 4.5 2.5 1.6 1.6 

3.0 18.1 - 5.28 - - - 3.4 1.9 - 0.9 

Table 4.   Heat flux (W m-2), corrected by the factor of 
5.13, as the function of the density ratio,R ρ , and the 
layer thickness, H (m). Dashes indicate no values were 

obtained due to the computational constraints. 

Comparison of the results from Table 4 to the diffusive 

fluxes determined from oceanic observations by Wilson 

(2007), reveals that both numerical and oceanic heat fluxes 

are in the same order of magnitude. This raises the question 

of using the higher value of τ  in the numerical simulations 

of diffusive heat fluxes. It is reasonable to assume that 

the higher value of τ  adversely affects the numerically 

determined diffusive heat fluxes and warrants future 

exploration. 

B. APPLICATION OF THE MERGING THEOREM 

Next, we proceed to determine how well the merging 

theorem predicts the timing of merging events was performed. 

The same series of numerical experiments which was used to 

verify merging of layers was used in this analysis. As 

expected, the value of heat flux decreased as the value of 

R ρ  increased as presented in Table 1. Next, the magnitudes 

of non-dimensional heat fluxes FT were plotted as a function 
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of R ρ , and the curve fitting was performed using Matlab 

curve fitting tool in order to determine the formula 

describing the coefficient C in formula (35). Based on the 

best fit, a formula was obtained  

   C = 6.2exp(-3.17R ρ )    (36) 

Substituting (36) into (35) yields 

    
153exp( 6.24 )

9.5 4B

R
R

ρ

ρ

λ
⎫− ⎪= ⎬+ ⎪⎭
.    (37) 

This form of Bλ  predicts the time scale for a particular 

merging event for the numerical experiments with an initial 

step size of 0.75. The inverse of Bλ  gives time in non-

dimensional units. The time scale was computed using formula 

(37) and compared to the time scale determined from 

numerical experiments. The results are summarized in Table 

5. 

 

R ρ  
Bλ  

theory 
Bλ  

actual 
t  
theory 
(non-dim.) 

t  
actual 
(non-dim.) 

t  
actual 
(days) 

1.1 0.0111 0.01 90.1 100 .80

1.2 0.0056 0.008 178.5 125 1.0

1.3 0.0028 0.0029 357.1 340 2.7

1.4 0.0014 0.0011 714.3 910 7.1

Table 5.   Comparison of merging theorem with numerical 
experiment. 
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In analyzing the values in Table 5, it is evident that 

the merging theorem predicts the time scale of merging 

events reasonably well, always within the order of 

magnitude. The verification of merging theorem for higher 

values of R ρ  was not performed due to the computational 

constraints; each increase of R ρ  by one tenth of a point 

results in an approximate doubling of the time scale. Future 

studies should expand the verification of merging theorem 

for the higher values of R ρ . 

 

Figure 21.   Variation of R ρ  across two different interfaces 

in a two-step numerical experiment. The green (blue) 
curve represents the higher (lower) initial value of 

R ρ . 

The physical principles described in Chapter IV 

confirmed the results in Figure 21, where we plot the same 



 55

records of the density ratios at two interfaces in a two-

step experiment with the overall R ρ =1.3 and H=3 m. Note the 

continuous increase (decrease) of the green (blue) curve 

representing the higher (lower) value of the density ratio 

at t=60 after the initial fluctuations. Also note a sharper 

decrease in the lower value of R ρ  at t=100 represented by 

the blue curve until the curve reaches R ρ =1, the moment 

when merging occurs. 
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V. RESULTS AND CONCLUSIONS 

The double-diffusive process has received a 

considerable amount of attention due to its effect on 

various large oceanic features.  This study is mainly 

focused on the dynamics of diffusive convection, 

particularly the numerical modeling of the dynamics of 

thermohaline staircases and associated diffusive fluxes. 

This study uses the results of the study of oceanic data 

from the Beaufort Gyre (Wilson, 2007) in order to compare 

the magnitude of the diffusive heat flux and to analyze its 

significance on the Arctic thermal budget. 

In order to compare the numerically computed diffusive 

heat fluxes to the fluxes computed from oceanic data, the 

4/3 flux is invoked (Turner, 1973). The validity of the 4/3 

flux was tested first for the numerical solution. The 

results are summarized in Table 3. The analysis revealed 

that the 4/3 flux law works reasonably well for the steps < 

3 m, but the amplitude needs adjustment. 

Padman (1994) and Muench et al (1990) concluded that 

diffusive convection could play a significant role in 

influencing the vertical heat fluxes from the warm and salty 

intermediate water upwards to the polar mixed layers and sea 

ice. However, the results from the laboratory experiments 

put the value of the vertical diffusive heat flux on the 

order of 10-2 to 10-1, a non-significant value in the total 

Arctic heat budget. Nevertheless, it is necessary to 

consider that the laboratory experiments differ in many ways 

from the actual oceanic conditions. Diffusive heat fluxes 

computed from oceanic data from the Beaufort Gyre range from 
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2 to 6 W m-2 (Wilson, 2007), a value which is large enough 

to play a significant role in the Arctic heat budget. 

The computed values of the diffusive heat fluxes range 

from 1 to 3 W m-2  for 3<R ρ <5 and are summarized in Table 4 

These values are comparable to the heat fluxes computed from 

the actual oceanic data. However, the values of numerically 

computed heat fluxes are up to an order of magnitude greater 

than the results from the laboratory solutions. Since there 

is large discrepancy among these results, more study is 

necessary before the final assessment of the role of the 

diffusive vertical fluxes in the maintenance of the Arctic 

thermocline can be made. 

In addition to computations of diffusive fluxes, this 

study offers some insight into the dynamics of thermohaline 

staircases. The merging theorem (Radko 2007) predicts types 

and scales of merging realized in the thermohaline 

staircases. The results of this study confirm that 

interfaces within the diffusive staircase erode over time 

without any vertical motion, confirming the merging theorem 

prediction that only B-type merger is taking place. 

The quantitative predictions of the merging theorem 

were tested as well and are summarized in Table 5. Based on 

these results, the numerical experiments confirm that the 

merging theorem predicts the time scale of merging events 

within an order of magnitude. Due to the computational 

constraints, only verification for the lower values of R ρ  

was performed. Since diffusive convection is favorable for 



 59

the regions with 2<R ρ <10 and 2<H<7 m, future studies should 

focus on a more complete exploration of this parameter 

range. 
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